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Abstract— Heat transfer to laminar non-Newtonian Couette flow with pressure gradient is investigated in
the present work. The general velocity distribution for a power-law non-Newtonian fluid is developed.
The heat transfer model, which includes the viscous dissipation, is numerically simulated by using an
implicit finite difference method. Comparison of the present numerical solutions for a special case with
the previous ones shows very good agreement for two different types of boundary conditions. The effects
of several dimensionless parameters, such as reciprocal of dimensionless pressure gradient, pseudoplastic
index and viscous dissipation parameter, on the heat transfer characteristics are numerically explored.

NOMENCLATURE
a;, integration constant ;
A, constant, —a/mex;
C,,  constant pressure heat capacity;
k, thermal conductivity;
m, consistency index;
n, pseudoplastic index;
Nu, Nusselt number, hd/k;
P, pressure;
T, temperature;

T,,  inlet temperature;

T,,  wall temperature of the bottom plate;
T,,  wall temperature of the top plate;

T,,  bulk temperature;

U, dimensionless velocity ;

U, local velocity ;

vV, velocity of the moving top plate;

X, axial coordinate;

X,  dimensionless axial coordinate, xk/pC,Vé*;

¥, coordinate perpendicular to the flow;

Vs location from the bottom where the
maximum velocity occurs;

Y, dimensionless coordinate perpendicular to

the flow, y/5;

dimensionless location from the bottom
plate where the maximum velocity occurs,
ym./jé'

Greek symbols

o, parameter in equation (5),
6 dPy
(“na)
B, dimensionless parameter, ¥ (n + 1)/nda'™;
3, distance between the two plates;
1, dimensionless temperature, (T, — T )/(T;
- To);
a, dimensionless temperature, (T — T, )/(T,
=Tp);
8, dimensionless bulk temperature, (7,

— T~ T);
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o, dimensionless parameter,

1 nt+1
(H: ) mVn+1/k5n—1ﬁn+l(T2_To);

1, shear stress,

1. INTRODUCTION

LAMINAR heat transfer to liquids in plane Couette
flow is a problem of practical interest and has been
receiving an increasing amount of attention in the
past several years. Thermal sterilization of liquid
foods and biological materials and heat transfer in
the bearing-journal devices are typical examples of
its applications [1-4].

This problem has been investigated by several
researchers. Important literature regarding the past
investigations can be found in [1-4]. A study of the
previous investigations indicates that most of these
works were confined to heat transfer to Newtonian
Couette flow only. The corresponding case in non-
Newtonian flow has received very little attention
thus far. The main reason for considering the plane
non-Newtonian Couette heat transfer is that a large
number of liquid foods, fermentation broths and
lubricating oils exhibit non-Newtonian rheological
behavior [5-7]. Investigation of this problem there-
fore may provide more relevant information of the
heat transfer characteristics across the flow passage.

The only available literature to date dealing with
heat transfer in non-Newtonian Couette flow was
that of Tien [8] who extended the Schlichting’s
approach for simple Newtonian heat transfer in a
Couette flow to the non-Newtonian case. The
problem investigated by Tien [8] involved a number
of restrictive assumptions which need further elab-
orations. For example, the axial heat convection was
neglected and no axial pressure gradient was
considered in his work. The first assumption was
particularly difficult to justify for this forced con-
vection problem. Because of these assumptions, the
problem he treated was oversimplified. Although an
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analytical solution was explicitly obtained, it would
not be able to show the true heat transfer character-
istics of the non-Newtonian Couette flow. In order to
improve Tien's solution, these restrictive assump-
tions have to be released and this is the purpose of
the present work.

2. VELOCITY DISTRIBUTION OF THE
NON-NEWTONIAN COUETTE FLOW
The velocity distribution for the Newtonian
Couette flow with pressure gradient can be repre-
sented by [1-4]:

2
AN SATRRAY
d 2u dx \d 0

If the pressure gradient is neglected in the above
equation, it reduces to a linear function of position
across the flow passage, which applies to Newtonian
as well as non-Newtonian Couette flows.

(1

by =
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A simple momentum balance of flow yields:

dr  dP 2)
dy  dx’ (
which is readily integrated to give
dp
T= | ——— |y+da,. (3)
dx

The non-Newtonian fluid is assumed to be character-
ized by the power-law model which for the present
case is represented by

<dvx g
1= —m|l—
dy
because the velocity gradient is positive for the entire
flow. Combining equations (3) and (4) leads to:

de

Xyl A_yl/n
ay ( >

@

(5)
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FI1G. 1. The non-Newtonian velocity distributions with n = 0.4.

An interesting point exhibited by the above
equation is that if the dimensionless group, §%/2p
(—~dP/dx), is equal to or less than one, the maximum
fluid velocity occurs at the top plate. On the other
hand, if this dimensionless pressure group is greater
than one, the maximum fluid velocity takes place
between the two plates. This characteristic is retained
also for the non-Newtonian case, as shown in Fig. L.
Such a flow characteristic renders the derivation of
velocity distribution for the non-Newtonian Couette
flow far more complicated than for the Newtonian
case. It may be for this reason that the velocity
distribution for the non-Newtonian Couette flow is
still not available in the open literature. Hence, it
must be derived first before the model formulation of
the present problem can be undertaken. Due to the
flow characteristic mentioned above, separate ex-
pressions of velocity distribution are needed for the
dimensionless pressure group less and greater than
one, respectively. In the following section, the
velocity distribution for the former case will be
developed first.

in which the pressure gradient is included in x and 4
contains the integration constant a, and «. The exact
forms of @ and A are given in the Nomenclature.
Integration of equation (5) yields

0, = _alfnfs(ﬁ" )(A— Yy nga,  (6)
n+!

which is applicable to the entire flow. Using the

boundary conditionv, = VatY=1landov, =0at Y

= () and eliminating a, leads to:

— ylin n A(n+1)/n_ A-Y (n+1)yn 7

v, =0 5(n+1>[ ( ) 1 (N
1 .

V= 1;::5 A(n+])in__ A—l {n+ 1yn A 8

o (-_n-i-l)[ (4-1) ] @®)

If the reciprocal of the dimensionless pressure
gradient for the present non-Newtonian case is
defined as

= n+1 |4
] 5{,;4—1}!»(_ i Cifz)”"

©)

m dx
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Equations (7) and (8) then can be rearranged to
yield:

%:‘=%[A("+1)/"—(A—-Y)("+1)/"] (10)
A("‘{'W"-(A—l)‘"*“/"zﬁ (]1)

It can easily be shown that, as n = 1, equations (10)
and (11) reduce to equation (1). Equation (11) serves
to determine A in terms of n and §. Knowing A4, the
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defined as before. Using the boundary condition v,
=V at ¥ = | to eliminate a, yields:

ux=V+a”"5( ! )
n+1

x[(]_A)(n+l)/n_(y___A)(n+l)/n]’ (15)

which can be rewritten, using equation (9), as

v

1
' _{=1+_ I_A(nJrl)/n_ Y‘—A("+1)/",
velocity distribution then can be constructed from V B [« ) ( ) ]
equation (10). for 12Y2Y, (16)
Table 1. Numerical values of 4 in terms of f and n
h
A 0.2 04 0.6 0.8 1.0
B

0.1 0.682451 0.570554 0.559372 0.552823 0.550000

0.2 0.764832 0.652729 0.617841 0.605462 0.600000

03 0.818206 0.716965 0.674627 0.657738 0.650000

0.4 0.858377 0.772728 0.729153 0.709477 .700000

0.5 0.890899 0.821461 0.781067 0.760514 0.750000

0.6 0.918386 0.864577 0.830211 0.810697 0.800000

0.7 0.942287 0.903217 0.876573 0.859882 0.850000

0.8 0.963492 0938254 0.920235 0.907930 0.900000

0.9 0.982596 0.970347 0.961329 0.954699 0.950000

1.0 1.000000 1.000000 1.000000 1.000000 1.000000

1.5 1.069913 1.122964 1.166662 1.207748 1.250000

20 1.122462 1.219881 1.307219 1.398253 1.500000

2.5 1.164995 1.301493 1.432336 1.578148 1.750000

30 1.200943 1.372848 1.546772 1.750368 2000000

5.0 1.307697 1.598670 1.938873 2.388679 3.000000

10.0 1.468056 1.980568 2.697504 3.794659 5.500000

30.0 1.764688 2.835158 4.766083  8.441074 15.50000

50.0 1523328 3.375477 6.300192 12.45084 25.50000

It must be borne in mind that equations (10} and Remembering that

(11) apply only for § > 1 which has a maximum fluid o 1
velocity at the top plate. For the case <1, the Z=_[g40*blr_(q_y)r+tbm]
maximum fluid velocity occurs somewhere between V. B
the two plates, say at Y, from the bottom plate. In for ¥,>Y20 (17

fact, equation (7) is still applicable to the present
case in the region Y,, > Y > 0 because of similar flow
characteristic, but A4 is no longer given by equation
(11). In the region 1 > Y 2 Y, however, a separate
expression is needed. In this region, equation (4)

becomes:
( do \"
T=m| ——1,
dy

because of negative velocity gradient. Invoking the
same derivations as above, the following equation
can be obtained from equations (3) and (12)
do,
dy

which is integrated to

(12)

= — gty — A, (13)

= —atimy{ Yy — )+t 4
v, a 5(n+1 (Y—A4) +az (14)

where the dimensionless parameters are similarly

As mentioned before, 4 in equations (16) and (17) is
different from that in the previous case with § > 1.
To determine A4 for the present case, the condition
that the velocities from equations (16) and (17) must
be equal at Y = ¥, can be used. It is also noted that
at Y =Y,, the velocity gradient ‘disappears. There-
fore from equation (13), it is apparent that Y, = 4.
By equating equation (16) to equation (17) at Y = A4,
there yields

A(n+1)/n_(l~A)(n+1),in=ﬁx (18}
With the value of 4 determined from equations (11)
and (18), the velocity distribution for the power-law
non-Newtonian fluids can be fully established from
equation (10) for # > 1 and equations (16) and (17)
for § < 1. The values of 4 from the two transcenden-
tal  equations were determined by the
Newton—-Raphson method [9] for different n and
and are listed in Table 1.
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3. THE HEAT TRANSFER MODEL

The steady state heat transfer equation with
constant physical properties can be written as:

c 5T“kﬂ do,
PPl T e T\ )

The second term in the right hand side represents the
viscous dissipation which was also considered by El-
Ariny and Aziz [4] and Tien [8]. The viscous
dissipation term is especially important for the
highly viscous non-Newtonian fluids.

In terms of the dimensionless variables and
parameters, equations (19) can be rewritten as

a6 8%
ox —oy?
where the dimensionless velocity distribution U(Y) is
given by equation (10) for § > | and equations (16)
and (17) for p<1, and ¢ is a dimensionless
parameter which reduces to the product of the

Eckert and Prandtl number for the Newtonian case.
The viscous dissipation function, f(Y), is given by

S(Y) = (a=yyerom,

(19)

U(Y) +of{Y), 20

for fzland 12Y 20, (21)
and
SV = A=Yy om,
for f<land 42Y20 (22)
= (Y— A)n+Dim
for f<lamd 12Y2A4. (23)

Two different sets of boundary conditions are
- considered here. They are:

X=0; 6=0 24)
Y=0;, 6=y (25)
Y=1; 6=1, (26)
for boundary condition 4, and
X=0; 8=0 27)
Y=0; 0=1 (28)
Y=1, 86/0Y =0, (29)

for boundary condition B. The Nusselt number is
evaluated as

N é (é‘T )
R a—al
TSZ - Tm ay y=0ord (30)
_ 1 <60
- 1'Wem aY Y=0or1 ’

where the dimensionless bulk temperature is given
by

1
f oU(Y)dY
= o o1
J U(Y)dy

0

The previous investigators [1-4] solved the cor-
responding equations for the Newtonian case by a
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semi-analytic method which requires accurate eva-
luation of the eigenvalues. In the present work, this
method was not attempted and instead the implicit
Crank—Nicolson finite difference method [9] was
used. This method is stable and accurate.

4, DISCUSSION AND RESULTS

In order to test the accuracy of the implicit finite
difference scheme, several runs were made for the
Newtonian Couette heat transfer as a special case so
that comparison can be made with the previous
results, The present numerical solutions are essen-
tially identical to the semi-analytical solutions of El-
Ariny and Aziz [4]. They [4] have pointed out that
insufficient number of eigenvalues used in the infinite
series of semi-analytic solution can lead to under-
estimation of both the dimensionless temperature
and the Nusselt number. The difficulty in accurate
evaluation of the eigenvalues, however, can be
avoided by using the finite difference method.

Other typical results for Case A are shown in Figs.
2-5. Figure 2 demonstrates the effect of the dimen-
sionless pressure gradient group f on the mean
dimensionless temperature. The mean dimensionless
temperature increases quite significantly with in-
creasing f. According to the definition, § is the
reciprocal of the pressure gradient. Low S cor-
responds to a high pressure gradient and hence the
flow becomes fast as f decreases, as seen in Fig. 1.
Fast flow reduces the residence time of the fluid
inside the channel and thus a lower mean dimension-
less temperature is expected. It is also observed in
this figure that the mean dimensionless temperature
seems to be rather sensitive to f when f§ is less than
one. For f greater than one, its effect becomes less

07 1 1
o6 —

04— —

(o4} —

o | | | |
o 004 008 o2 016 02

X

FiG. 2. The effect of reciprocal of dimensionless pressure
gradient on the dimensionless mean temperature for Case A
withn = 04,0 =0,and = 0.



Heat transfer to plane non-Newtonian Couette flow

3

| ]

n=l-

o2

@ 03— —

0 ! | | |
008 oi2 016 o2

X

FiG. 3. The effect of the pseudoplastic index on the
dimensionless mean temperature for Case A with § =0, ¢
=0andn =0
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F1G. 4. The effect of the viscous dissipation parameter on
the dimensionless mean temperature for Case A with f
=05 n=04andn =0

appreciable. This may be due to the fact that the
shape of the velocity profile, as shown in Fig. 1,
changes more significantly in the region with 8 less
than one.

The effect of the pseudoplastic index n on the
dimensionless mean temperature is shown in Fig. 3.
The value of n ranging from 0.2 to 1.0 covers a large
number of non-Newtonian liquid foods, polymer
melts and lubricant oils [5-7]. According to equa-
tion (10), as the value of n increases to infinity, the
velocity profile becomes a linear function of Y. For a
smaller n, a nonlinear velocity profile appears and
deviation from the linear profile increases with
decreasing n. This implies that the residence time of
the fluid increases with increasing n. This explains for
the increasing dimensionless mean temperature at a
larger n.
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4 Present solution
& o ErAriny and Aziz

Nu

F1G. 5. The local Nusselt number vs the axial position for
Case A withg =0andn = 0.
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Fig. 6. The effect of the reciprocal of dimensionless
pressure gradient on the dimensionless mean temperature
for Case Bwithn=04and ¢ =0.

As mentioned previously, the viscous dissipation
can be rather significant in many practical circum-
stances because of high fluid viscosity of many non-
Newtonian fluids. The effect of viscous dissipation on
the dimensionless mean temperature is displayed in
Fig. 6. It is obvious that the viscous dissipation tends
to increase the dimensionless mean temperature as
anticipated. This is due to irreversible conversion of
mechanical energy to thermal energy.

The local Nusselt numbers for different values of
are given in Fig. 5. Also included in this figure is a
special case with n = 1 so that comparison with that
of El-Ariny and Aziz [4] can be made. The
agreement between the present solution and the
semi-analytic one of El-Ariny and Aziz [4] appears
to be very good. The local Nusselt numbers for all
the cases tend to asymptotically approach some
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— Present solution
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F1G. 7. The local Nusselt number vs the axial position for
Case Bwitho = 0.

constants as the dimensionless axial distance be-
comes sufficiently large because of full development
of the thermal field.

The numerical results for Case B are shown in
Figs. 6 and 7. It is clear that the general heat transfer
characteristics of the previous case are still retained
for the present one. Comparison of Figs. 6 and 2
indicates that the temperature development of the
fluid is faster for Case A than the present one. Fast
thermal development results in smaller temperature
gradient which may be mainly responsible for the
lower Nusselt number for Case A especially for X
<0.1.

S.H.LIN

5. CONCLUSIONS

An analytical procedure is presented in this study
for calculating the thermal development in a non-
Newtonian Couette flow with pressure gradient. The
general heat transfer model is simulated, using an
implicit finite difference method, to investigate the
effects of several dimensionless parameters on the
heat transfer characteristics. The present numerical
solution for a special case is in good agreement with
the previous one obtained semi-analytically. Because
of the accuracy and stability of the finite difference
method, relevant information can be generated
without difficulty for the purpose of design of heat
transfer equipment.
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TRANSFERT THERMIQUE EN PAROI POUR UN ECOULEMENT DE COUETTE DE
FLUIDE NON-NEWTONIEN

Reésume—On etudie le transfert thermique pour un écoulement laminaire de fluide non-newtonien selon

Couette, avec gradient de pression. La distribution des vitesses est établie pour une loi puissance de fluide

non-newtonien. Le modele qui inclut la dissipation visqueuse est simulé numériquement en utilisant une

méthode implicite aux difference finies. Une comparaison des résultats numériques, dans un cas

particulier, avec d'autres antérieurs montre un trés bon accord pour deux types différents de conditions

aux limites. On analyse les effets de plusieurs parametres adimensionnels tels que 'homologue du
gradient de pression, I'indice pseudoplastique et le parameétre de dissipation visqueuse.

WARMEUBERGANG IN EINER EBENEN NICHT-NEWTONSCHEN COUETTE-STROMUNG

Zusammenfassung-—In der vorliegenden Arbeit wird der Wirmeibergang in einer laminaren nicht-
newtonschen Couette-Stromung mit Druckgradienten untersucht. Die allgemeine nach einem Poten-
zgesetz verlaufende Geschwindigkeitsverteilung wird fiir ein nicht-newtonsches Fluid entwickelt. Das
Wirmetransport-Modell, welches die zihigkeitsbedingte Dissipation beinhaltet, wird unter Anwendung
eines finiten Differenzenverfahrens numerisch simuliert. Der Vergleich fur einen bestimmten Fall der

erhaltenen numerischen Losung mit

fritheren Losung zeigt fur zwei verschiedene Arten von

Randbedingungen gute Ubereinstimmung. Die Einfliisse von einigen dimensionslosen Parametern, wie
dem Reziprokwert des dimensionslosen Druckgradienten, dem pseudoplastischen Index und dem
Parameter der viskosen Dissipation auf das Warmeiibergangsverhalten werden numerisch untersucht.
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TENJIONEPEHOC K OBOBIEHHOMY KY3TTOBCKOMY TEYEHUIO
HEHBIOTOHOBCKON XHUIKOCTU

Aunotaunn — [lonyyeHo obluee pacnpeaesicHHe CKOPOCTEH LT HEHbIOTOHOBCKOH «CTEMEHHOW» XHI-
kocTd. CHCTeMa ypaBHEHHHl 118 mepeHoca Temsa, BKIlOMalolllas BA3KYI0 JHCCHMALMIO, pellaeTcs
YHCJIEHHO C TOMOLUBIO HEABHOTO KOHEYHO-Pa3HOCTHOro MeToAa. CpaBHEHHE Pe3ybTATOB YHUCIEHHBIX
petlieHHH BBIOPAHHOTO KOHKPETHOTO Ciyvas ¢ /[aHHBIMH, MONYYCHHBIMM paHee, JaeT Xopoluee
COBNAJEHHE /IR JBYX Pa3zjH4HbIX THIOB [PAHHYHBIX YCMOBMH. UHCNEHHO HCCAENOBAHO BIHSHHE Ha
XapakTEPHCTHKH INEPEHOCA Temla HECKOAbKHX Ge3pa3MepHBIX NapaMeTpoB, TakHMX Kak oOpaTHas
Be/MYMHAa Ge3pa3sMEepHOro rpajHeHTa NaBJEHMS, HMHACKC NCEBIONJACTHYHOCTH H NApaMeTp BA3KOM
JAHCCHNALIHA.
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