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Abstract-Heat transfer to laminar non-Newtonian Couette flow with pressure gradient is investigated in 
the present work. The general velocity distribution for a power-law non-Newtonian fluid is developed. 
The heat transfer model, which includes the viscous dissipation, is numerically simulated by using an 
implicit finite difference method. Comparison of the present numerical solutions for a special case with 
the previous ones shows very good agreement for two different types of boundary conditions. The effects 
of several dimensionless parameters, such as reciprocal of dimensionless pressure gradient, pseudoplastic 

index and viscous dissipation parameter, on the heat transfer characteristics are numerically explored. 

NOMENCLATURE 

integration constant; 

constant, --n,/trzr; 
constant pressure heat capacity; 
thermal conductivity; 
consistency index; 
pseudoplastic index ; 
Nusselt number, M/k; 

pressure; 
temperature; 
inlet temperature; 
wall temperature of the bottom plate; 
wall temperature of the top plate; 
bulk temperature; 
dimensioniess velocity; 
local velocity ; 
velocity of the moving top plate; 
axial coordinate ; 
dimensionless axial coordinate, x~/,&,V&~ ; 
coordinate perpendicular to the flow; 
location from the bottom where the 
maximum velocity occurs; 
dimensionless coordinate perpendicular to 
the flow, y/v/6 ; 
dimensionless location from the bottom 
plate where the maximum velocity occurs, 
$1 is. .m 

Greek symbols 

m, parameter in equation (5), 

6 dP 

i >: m dx 

P* dimensionless parameter, V(n+ 1)/n&‘/“; 

6, distance between the two plates; 

V. dimensionless temperature, (Tl - ~~)/(T~ 

-To); 

0, dimensionless temperature, (T- To)/( T, 

-To); 
B rnr dimensionless bulk tem~rature, (T, 

- T,)/(T, - T,); 

0, dimensionless parameter, 

shear stress. 

1. IN~ODUCTION 

LAMINAR heat transfer to liquids in plane Couette 
flow is a problem of practical interest and has been 
receiving an increasing amount of attention in the 
past several years. Thermal sterilization of liquid 
foods and biological materials and heat transfer in 
the bearing-journal devices are typical examples of 
its applications [l-4]. 

This problem has been investigated by several 

researchers. Important literature regarding the past 
investigations can be found in [l-4]. A study of the 
previous investigations indicates that most of these 
works were confined to heat transfer to Newtonian 
Couette flow only. The corresponding case in non- 

Newtonian flow has received very little attention 
thus far. The main reason for considering the plane 
non-Newtonian Couette heat transfer is that a large 
number of liquid foods, fermentation broths and 
lubricating oils exhibit non-Newtonian rheological 
behavior [5-71. Investigation of this problem there- 
fore may provide more relevant information of the 
heat transfer characteristics across the flow passage. 

The only available literature to date dealing with 
heat transfer in non-Newtonian Couette flow was 
that of Tien [S] who extended the Schlichting’s 
approach for simple Newtonian heat transfer in a 
Couette flow to the non-Newtonian case. The 
problem investigated by Tien [S] involved a number 
of restrictive assumptions which need further elab- 
orations. For example, the axial heat convection was 
neglected and no axial pressure gradient was 
considered in his work. The first assumption was 
particularly difficult to justify for this forced con- 
vection problem. Because of these assumptions, the 
problem he treated was oversimplified. Although an 
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analytical solution was explicitly obtained, it would A simple momentum balance of flow yields: 
not be able to show the true heat transfer character- 
istics of the non-Newtonian Couette flow. In order to 

dt dP 

G= -dx’ (2) 
improve Tien’s solution, these restrictive assurnp- 
tions have to be released and this is the purpose of which is readily integrated to give 
the present work. dP 

r= 
( :! -dx JJ+al. 

(3) 
2. VELOCITY DISTRIBUTION OF THE 
NOB-NEWTONIAN COUE’ITE FLOW The non-Newtonian fluid is assumed to be character- 

The velocity distribution for the Newtonian ized by the power-law model which for the present 
Couette flow with pressure gradient can be repre- case is represented by 
sented by [l-4] : 

dv, ’ 

a =!!,_s’dp y 
2~ dx s (!( > 

1-i . (1) r=-m dy i 1 
(4) 

X 6 

If the pressure gradient is neglected in the above 
because the velocity gradient is positive for the entire 

equation, it reduces to a linear function of position 
flow. Combining equations (3) and (4) leads to: 

across the flow passage, which applies to Newtonian dti _.cr = 
as well as non-Newtonian Couette flows. d.v 

cxl’“(‘4 - Y)l’“, (5) 

Y 

L X 

FIG. 1. The non-Newtonian velocity distributions with n = 0.4. 

An interesting point exhibited by the above 
equation is that if the dimensionless group, 62/2p 
(-dP/dx), is equal to or less than one, the maximum 
fluid velocity occurs at the top plate. On the other 
hand, if this dimensionless pressure group is greater 
than one, the maximum fluid velocity takes place 
between the two plates. This characteristic is retained 
also for the non-Newtonian case, as shown in Fig. 1. 
Such a flow characteristic renders the derivation of 
velocity distribution for the non-Newtonian Couette 
flow far more complicated than for the Newtonian 
case. It may be for this reason that the velocity 
distribution for the non-Newtonian Couette flow is 
stilt not available in the open literature. Hence, it 
must be derived first before the model formulation of 
the present problem can be undertaken. Due to the 
flow characteristic mentioned above, separate ex- 
pressions of velocity distribution are needed for the 
dimensionless pressure group less and greater than 
one, respectively. In the following section, the 
velocity distribution for the former case will be 
developed first. 

in which the pressure gradient is included in a and A 

contains the integration constant a, and a. The exact 
forms of t( and A are given in the Nomenclature. 
Integration of equation (5) yields 

(6) 

which is applicable to the entire flow. Using the 
boundary condition v, = Vat Y = 1 and v, = 0 at Y 
= 0 and eliminating az leads to: 

[A(“+‘)i”-(A-Y)(“+l)‘“] (7) 

If the reciprocal of the dimensionless pressure 
gradient for the present non-Newtonian case is 
defined as 

v 
lin’ 

(9) 
6(“+l)/” 
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Equations (7) and (8) then can he rearranged to defined as before. Using the boundary condition u, 

yield : = Vat Y = 1 to eliminate aJ yieids: 

& =; [A(“+i)/“-(A- Y)(“+i)/“] (10) D, = Y+n”“s[&J 

,@fl)/“_ ( ,&l)(“+l)/A = P* (11) x [(1 -A)(“*s)i”-(Y-A)f”+i)‘“], (15) 

It can easily be shown that, as n = 1, equations (10) 
and (11) reduce to equation (1). Equation (11) serves 

which can be rewritten, using equation (9), as 

to determine A in terms of n and B. Knowing A, the 0~ 
velocity distribution then can be constructed from 

v= l+$[(l-AIL”+l~:n_ly_Ai(“‘i)‘n,, 

equation (10). for 1 2 Y >, Y,. (16) 

Table 1. Numerical values of A in terms of/j’ and n 

\ 
n 

A 0.2 0.4 0.6 0.8 1.0 

B 

0.1 0.68245 1 0.570554 0.559372 0.552823 0.550000 
0.2 0.764832 0.652729 0.617841 0.605462 0.600000 
0.3 0.818206 0.716965 0.674627 0.657738 0.450~ 
0.4 0.858377 0.172728 0.729153 0.709477 0.700000 
0.5 0.890899 0.821461 0.781067 0.760514 0.750000 
0.6 0.918386 0.864577 0.830211 0.8 10697 0.800000 
0.7 0.942287 0.903217 0.876573 0.859882 0.8500~ 
0.8 0.963492 0.938254 0.920235 0.907930 0.900000 
0.9 0.982596 0.970347 0.961329 0.954699 0.950000 
1.0 MOOOOO 1.~~0 1.OuoOOO 1.oOOOOO 1 .oOOOOO 
1.5 1.069913 1.122964 1.166662 1.207748 1.250000 
2.0 1.122462 1.219881 1.307219 1.398253 1.500000 
2.5 1.164995 1.301493 1.432336 1.578148 1.750000 
3.0 1.200943 1.372848 1.546772 1.750368 2.~ 
5.0 1.307697 1.598670 1.938873 2.388679 3.OuOoOo 

10.0 1.468056 1.980568 2.697504 3.794659 5.500000 
30.0 1.764688 2.835158 4.766083 8.441074 15.5OQO0 
50.0 1.923328 3.375477 6.300192 12.45084 2550000 

It must be borne in mind that equations (10) and 
(11) apply only for p > 1 which has a maximum fluid 
velocity at the top plate. For the case fi < 1, the 
maximum fluid velocity occurs somewhere between 
the two plates, say at Y, from the bottom plate. In 
fact, equation (7) is still applicable to the present 
case in the region Y, >, Y 3 0 because of similar flow 
characteristic, but A is no longer given by equation 
(11). In the region 1 > Y > Y,, however, a separate 
expression is needed. In this region, equation (4) 
becomes : 

because of negative velocity gradient. Invoking the 
same derivations as above, the following equation 
can be obtained from equations (3) and (12) 

dl?, 
dy=- 

&n( Y- A)““. (13) 

which is integrated to 

u, = -czi’“S 5 (Y-A)‘“+“‘“+a,, (14) 
( ! 

where the dimensionless parameters are similarly 

Remembering that 

for Y, > Y b 0. (17) 

As mentioned before, A in equations (16) and (17) is 
different from that in the previous case with fl > 1. 
To determine A for the present case, the condition 
that the velocities from equations (16) and (17) must 
be equal at Y = Y,, can be used. It is also noted that 
at Y = Y,, the velocity gradient ‘disappears. There- 
fore from equation (13), it is apparent that Y, = A. 

By equating equation (16) to equation (17) at Y = A, 
there yields 

Af”+l)l”_(l_A)(“+l)i” = p. (18) 

With the value of A determined from equations (11) 
and (18), the velocity distribution for the power-law 
non-Newtonian fluids can be fully established from 
equation (10) for /j’ > 1 and equations (16) and (17) 
for /3 < 1. The values of A from the two transcenden- 
tal equations were determined by the 
Newton-Raphson method [9] for different n and p 
and are listed in Table 1. 
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3. THE HEAT TRANSFER MODEL 

The steady state heat transfer equation with 
constant physical properties can be written as: 

semi-analytic method which requires accurate eva- 
luation of the eigenvalues. In the present work, this 
method was not attempted and instead the implicit 
Crank-Nicolson finite difference method [IS] was 
used. This method is stable and accurate. (19) 

The second term in the right hand side represents the 
viscous dissipation which was also considered by El- 
Ariny and Aziz [4] and Tien [8]. The viscous 
dissipation term is especially important for the 
highly viscous non-Newtonian fluids. 

In terms of the dimensionless variables and 
parameters, equations (19) can be rewritten as 

where the dimensionless velocity distribution U(Y) is 
given by equation (10) for /i’ > 1 and equations (16) 
and (17) for p < 1, and g is a dimensionless 
parameter which reduces to the product of the 
Eckert and Prandtl number for the Newtonian case. 
The viscous dissipation function, f( Y), is given by 

,f(Y) = (A- Y)(“+l)‘“, 

for /r’> 1 and 12 Y&O, (21) 

and 

f(Y) = (A-y)(“+f)i”, 

for 8 < 1 and A 2 Y > 0 (22) 

= (y-A)(“fl)/“, 

for P < 1 amd 1 2 Y 2 A. (23) 

Two different sets of boundary conditions are 
considered here. They are: 

x=0; @=O (24) 

Y=O; 8=P/ (25) 

y==l; e=i, (26) 

for boundary condition A, and 

x=0; 6=0 (27) 

Y=O; 0=1 (28) 

Y = 1; aelar = 0, (29) 

for boundary condition R. The Nusselt number is 
evaluated as 

where the dimensionless bulk temperature is given 

by 

i’ 

1 
W(Y)dY 

tJm=-O, 

5 

(31) 
U(Y)dY 

0 

The previous investigators [i-4] solved the cor- 
resnondina eouations for the Newtonian case bv a v 1 

FIG. 2. The effect of reciprocal of dimensionless pressure 
gradient on the dimensionless mean temperature for Case A 

4. DISCUSSION AND RESULTS 

In order to test the accuracy of the implicit finite 
difference scheme, several runs were made for the 
Newtonian Couette heat transfer as a special case so 
that comparison can be made with the previous 
results. The present numerical solutions are essen- 
tially identical to the semi-analytical solutions of El- 
Ariny and Aziz [4]. They [4] have pointed out that 
insu~~ient number of eigenvalues used in the infinite 
series of semi-analytic solution can lead to under- 
estimation of both the dimensionless temperature 
and the Nusselt number. The difficulty in accurate 
evaluation of the eigenvalues, however, can be 
avoided by using the finite difference method. 

Other typical results for Case A are shown in Figs. 
2-5. Figure 2 demonstrates the effect of the dimen- 
sionless pressure gradient group /$ on the mean 
dimensionless temperature. The mean dimensionless 
temperature increases quite significantly with in- 
creasing fi. According to the definition, /? is the 
reciprocal of the pressure gradient. Low fi cor- 
responds to a high pressure gradient and hence the 
flow becomes fast as fi decreases, as seen in Fig. 1. 
Fast flow reduces the residence time of the fluid 
inside the channel and thus a lower mean dimension- 
less temperature is expected. It is also observed in 
this figure that the mean dimensionless temperature 
seems to be rather sensitive to fi when /3 is less than 
one. For fl greater than one, its effect becomes less 

X 

with n = 0.4, CT = 0, and 9 = 0. 
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X 

FIG. 3. The effect of the pseudoplastic index on the 
dimensionless mean temperature for Case A with D = 0, D 

= 0 and q = 0. 

X 

FIG. 4. The effect of the viscous dissipation parameter on FIG. 6. The effect of the reciprocal of dimensionless 
the dimensionless mean temperature for Case A with /J’ pressure gradient on the dimensionless mean temperature 

= 0.5, n = 0.4 and q = 0. for Case B with n = 0.4 and CI = 0. 

appreciable. This may be due to the fact that the 
shape of the velocity profile, as shown in Fig. 1, 

changes more significantly in the region with fi less 
than one. 

The effect of the pseudoplastic index n on the 
dimensionless mean tem~rature is shown in Fig. 3. 
The value of n ranging from 0.2 to 1.0 covers a large 
number of non-Newtonian liquid foods, polymer 
melts and lubricant oils [S-7]. According to equa- 
tion (IO), as the value of n increases to infinity, the 
velocity profile becomes a linear function of Y. For a 
smaller n, a nonlinear velocity profile appears and 
deviation from the linear profile increases with 
decreasing n. This implies that the residence time of 
the fluid increases with increasing n. This explains for 
the increasing dimensionless mean temperature at a 
larger n. 

6 o El-Afiny and A.?& 

FIG. 5. The local Nusseit number vs the axial position for 
Case A with D = 0 and q = 0. 

0 0.04 006 0.12 0.16 0.2 

As mentioned previously, the viscous dissipation 

can be rather significant in many practical circum- 
stances because of high fluid viscosity of many non- 
Newtonian fluids. The effect of viscous dissipation on 
the dimensionless mean temperature is displayed in 
Fig. 6. It is obvious that the viscous dissipation tends 
to increase the dimensionless mean temperature as 
anticipated. This is due to irreversible conversion of 
mechanical energy to thermal energy. 

The local Nusselt numbers for different values of a 
are given in Fig. 5. Also included in this figure is a 
special case with n = 1 so that comparison with that 
of El-A&y and Aziz [4] can be made. The 
agreement between the present solution and the 
semi-analytic one of El-Ariny and Aziz [4] appears 
to be very good. The local Nusselt numbers for all 
the cases tend to asymptotically approach some 
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FIG. 7. The local Nusselt number vs the axial position for 
Case B with 0 = 0. 

constants as the dimensionless axial distance be- 

comes sufficiently large because of full development 

of the thermal field. 

The numerical results for Case B are shown in 
Figs. 6 and 7. It is clear that the general heat transfer 
characteristics of the previous case are still retained 
for the present one. Comparison of Figs. 6 and 2 

indicates that the temperature development of the 
fluid is faster for Case A than the present one. Fast 
thermal development results in smaller temperature 
gradient which may be mainly responsible for the 

lower Nusselt number for Case A especially for X 
< 0.1. 

An analytical procedure is presented in this study 
for calculating the thermal development in a non- 
Newtonian Couette flow with pressure gradient. The 
general heat transfer model is simulated, using an 
implicit finite difference method, to investigate the 
effects of several dimensionless parameters on the 
heat transfer characteristics. The present numerical 
solution for a special case is in good agreement with 
the previous one obtained semi-analytically. Because 
of the accuracy and stability of the finite difference 
method, relevant information can be generated 
without difficulty for the purpose of design of heat 
transfer equipment. 
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TRANSFERT THERMIQUE EN PAR01 POUR UN ECOULEMENT DE COUETTE DE 
FLUIDE NON-NEWTONIEN 

R&urn& On ttudie le transfert thermique pour un tioulement laminaire de fluide non-newtonien selon 
Couette, avec gradient de pression. La distribution des vitesses est ttablie pour une loi puissance de fluide 
non-newtonien. Le modele qui in&t la dissipation visqueuse est simule numeriquement en utilisant une 
methode implicite aux difference linies. Une comparaison des r&hats numtriques, dans un cas 
particulier, avec d’autres anterieurs montre un tres bon accord pour deux types diffirents de conditions 
aux limites. On analyse les effets de plusieurs parametres adimensionnels tels que I’homologue du 

gradient de pression, I’indice pseudoplastique et le parametre de dissipation visqueuse. 

WARMEOBERGANG IN EINER EBENEN NICHT-NEWTONSCHEN COUETTE-STROMUNG 

Zusammenfassung In der vorliegenden Arbeit wird der Warmeibergang in einer laminaren nicht- 
newtonschen Couette-Strdmung mit Druckgradienten untersucht. Die allgemeine nach einem Poten- 
zgesetz verlaufende Geschwindigkeitsverteilung wird fiir ein nicht-newtonsches Fluid entwickelt. Das 
WCrmetransport-Modell, welches die zihigkeitsbedingte Dissipation beinhaltet, wird unter Anwendung 
eines finiten Differenzenverfahrens numerisch simuliert. Der Vergleich fiir einen bestimmten Fall der 
erhaltenen numerischen Ldsung mit friiheren Ldsung zeigt fiir zwei verschiedene Arten von 
Randbedingungen gute ubereinstimmung. Die Einfllisse von einigen dimensionslosen Parametern, wie 
dem Reziprokwert des dimensionslosen Druckgradienten, dem pseudoplastischen Index und dem 

Parameter der viskosen Dissipation auf das Wlrmeiibergangsverhalten werden numerisch untersucht. 
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TEl-lJIO~EPEHOC K OEO6~EHHOMY KYWTOBCKOMY TEqEHHlO 
HEHbKITOHOBCKOn EkifiKOCTM 

AHHOTNVIII- nOJly’IeH0 o6uee ~CIl~~eJleHH~ CKOpWTeii NIll HeHbtOTOHOBCKOii WGTeneHHOkN XWl- 

Kocm. CwTeMa ypaBHeHd n.n~ nepeHoca Tenna, nKmmamu.tan Brsrym ntmmaqmo, peuaercn 

'iHCneHH0 C IlOMOUlbKI HellBHOrO YOHeqHO-pa3HOCTHOrO MeTODa. Cpi3BHeHHe pe3ynbTaTOB WiCneHHbIX 

pem%Hii Bbr6pamroro KOHK~~THO~O cnyqan c LIaHHbIMH, non)nteHHbrMu paaee, naeT xopoluee 

cosnafieeae nm neyx pa3nwiHbtX TmoB rpaHmHblx ycnoeel. QcneHHo HccnenonaHo tmfmue Ha 

XapaKTepHCTHKll IlepeHOCa TeIlna HeCKOnbKHX 6e3pa3MepHbIX IlapaMeTpOB, TaKHX KaK 06paTHaR 

BenHwHa 6e3pa3MepHoro rpanHeHTa naaneeaa, HHneKC nCeBnOnnaCTwiHocTH H napaMeTp BR~KO~~ 

nmxmaukui. 


